Monday 28 November 2011

John Deere Air Intake Engine Design Systems

A unique feature of John Deere engines is that the engines are designated differently based upon the type of the air intake systems used in its varied industrial, construction, agricultural, oil and gas or other applications. Understanding these different designations is crucial in deciphering the application of the engine and in identifying the correct maintenance parts.

The five (5) different designations that are used for John Deere engines are D, T, A, S and H. The D is the oldest and simplest air intake system for John Deere engines. This is a an engine whereby the reciprocating positions will pull air into the air intake system directly through an air filter, and directly into the combustion chamber where combustion occurs.

The T designated engines are all turbocharged engines. The turbocharged engine process was a later addition to the “D” engines to reduce fuel combustion and boost engine power. The turbocharged unit is fitted between the air intake system and the ducts leading to the combustion chamber. Exhaust gases are channeled through radial placed vanes on a shaft, which produced motion in one side of the turbocharged unit. The central shaft then turns a compressor in the second section of the turbocharger, pulling filtered air in and compressing it to a high density. The high density air is then compressed into the combustion chamber. The higher air density ensures more efficient fuel combustion and improved fuel economy.

The third John Deere engine designation is A. The A abbreviation is an indication that the engine is fitted with a turbocharger and an Aftercooler, and the cooling medium in the engine is air to water/coolant. The aftercooler is a cooling device like a radiator with its cooling medium being coolant or water.

In the John Deere 4650 tractor, the intercooler fits into the intake manifold of the engine and cools the compressed air that’s being routed from the turbocharger before it enters the combustion chamber. In the turbocharger, the compressed air makes it denser; however, the temperature of the air has also increased. However, hot air will expand less when burned in the combustion chamber and may also cause diesel knock. The liquid coolant intercooler is used to reduce the temperature of the compressed air to prevent these combustion problems.

The H designation John Deere engine abbreviation is another option to the A engine in that the engine is fitted with an intercooler, however, the cooling medium in the H engine is air. Ambient air is forced into the tubes of the intercooler, absorbing the heat of the compressed turbocharged air, and then being discharged. The H engine aftercooling system is called “air to air".

The final designation of John Deere engines is the S designation. The S John Deere engines are the marine engines, and the S symbol indicates that the marine engine is turbocharged and aftercooled, however cooled by a combination of air and seawater. There are different configurations of this cooling system, which may include additional pumps and pipes to pull in seawater and then to expel the heated water back into the river or sea.

Ontario Parts Hotline is a premium provider of Kubota Tractor Parts and Kubota PTO Parts.

Ford 7000 Tractor

The Ford 7000 Tractor was manufactured between 1971 to 1975. The engine is a four (4) cylinder diesel turbocharged engine, producing ninety four (94) hp of power. Ford tractor parts for the engine can be wither standard or over-sized pistons, rings, main bearings, and/or connecting rod bearings. As is typical with most Ford engines, there are no sleeves in the kit as Ford tractors are the sleeveless engines whereby the pistons and rings are fitted directly into the engine block.

It's PTO shaft can be either the 540 rpm type, or there is an option to have the 1000 rpm PTO shaft. This is a two wheel drive tractor, with manual steering and an optional hydrostatic power attachment on some models.

The electrical system is powered by a negative ground 12V system, producing a maximum of 51 amps of DC power, and charging a 12V 128 AH battery in the process. The alternator is a Mo/Pres model.

The 7000 Ford tractor water pump selection can be a little troublesome without a parts manual to provide a part number. Ford tractor parts for the cooling system and specifically the water pumps, will need to be chosen based on the serial number of the tractor. Tractors built between 1965 to 1975 will have two different water pumps-one with a double pulley and one with a single pulley.

Seats for the 7000 Ford tractor can come in a variation of patterns and colors. There are the blue or black vinyl pan seats, the complete seat with a suspension system, or a newer custom seat from the aftermarket suppliers.

Ontario Parts Hotline is a premium provider of Kubota Tractor Parts and Kubota PTO Parts.

How To Save on DownTime on Engine Repair by Using a Long Block

Repairing an engine by a complete overhaul is a popular way of maintaining tractor engines, and ensuring continuous problem free operation of heavy duty machines. However, the overhaul process can take a minimum of five (5) days if all of the parts are readily available for the overhaul, and typically approximately ten (10) days for the complete overhaul to be completed, with the additional time to procure the parts needed for the overhaul.

Depending on what needs to be repaired on the old engine, a complete block assembly engine, or a long block as it is sometimes called, can be faster repair job for a tractor engine that requires a new block and a cylinder head.

The short block comprises of the cylinder block and the crankcase connected by a connecting rod and precision heavy duty welding. The long block is the next level in engine repair, as compared to the short block. The long block has additional components that make repairs less tedious.

The most significant addition that makes up the long block is the cylinder head. This is bolted to the top of the cylinder block by head bolts and sealed with a head gasket.  Depending on the engine model and manufacturing company, the cylinder head can contain a section of the combustion chamber. All will have the intake valves, exhaust vales, valve springs, valve keepers, and the rocker arm assembly. The rocker arm assembly comprises of the rocker arm shaft, tappets, push rods, and the rocker arms. The camshaft assembly in the crankcase moves the push rods which mechanically operates the rocker arm assembly.

Both the long block and the short block will have the front gear train, with pulleys and chains. However, the long block will have the front plate, which is a protective covering for the gear train components.

In some models, the rear seal housing with the seal is provided. For example, the 6081 John Deere engine long block, this housing is provided as a part of the complete engine assembly.

The oil pump and oil pump accessories are another pertinent addition to the long block assembly. The exact location of the oil pump varies by engine type and manufacturer, however, a large percentage of oil pumps are fitted in the lower section of the crankcase, with an oil filler tube extending downwards into the area where the oil pan will be located. At the bottom of this filler tube, is fitted an oil strainer.

The long block would have been fitted internally with many gaskets, including the front gear train gasket, the oil pump gasket, the head gasket, and a few others. However, since there will be many engine accessories to be added to the external parts of the engine, a complete gasket kit is normally shipped with the engine assembly. This will include gaskets for the exhaust and intake manifolds, water pump, fuel pump and fuel transfer pumps.

For completely remanufactured engine assemblies that were rebuilt to OEM specifications, all internal components used in the rebuilt process will be new components, with the exception of the blocks, cylinder head, and crankshaft which are typically rebuilt to OEM specifications and reused.

Ontario Parts Hotline is a premium provider of Kubota Tractor Parts and Kubota PTO Parts.

How To Save on DownTime on Engine Repair by Using a Short Block

Replacement engines for tractors, combines and other heavy duty equipment are available in different configurations and types. The choice on which to choose will depend on several factors, including the damage to the present engine, and how much down time can be absorbed.

A problem that sometimes necessitates an engine block replacement arises from loose main bearings, which when spun out, can cause a broken connecting rod that violently breaks and punches through the side of the engine block. There has been examples where the connecting rod punches up into the cylinder head.

In such examples, all other engine components are in perfect working condition, however, the bottom section of the engine needs to be replaced. In engine terminology, the bottom section of the engine is called a short block. Large tractor engines are typically made up of four major components, joined together by smaller components and with accessories attached to the external areas of the engine.

The four major components of a large tractor engine are the cylinder head at the top, the cylinder block under the cylinder head, the crankcase under the cylinder block, and the oil pan at the bottom of the crankcase.

The short block engine comprises two of these, namely the cylinder block, and the crankcase. In the automotive field and lawn mower manufacturer which uses small engines, the cylinder block and the crankcase is casted as a single casting during manufacture. However, in large tractor engine and marine engine manufacture, the cylinder block and the crankcase are manufactured as separate castings and then joined afterwards by welded steels plates and precision heavy duty welding. The cylinder block and the crankcase serve different complimentary functions.

The cylinder block is the section of the engine that houses the cylinder liners, the piston assembly and the camshaft. The top section of the cylinder block is called the combustion chamber. On the top of this assembly is bolted the cylinder head. The cylinder head is not a part of the short block engine.

The bottom section of the short block engine is the crankcase. This section of the engine houses the crankshaft, main bearings, crank seals, and front gear train. The combination of the cylinder block and the crankcase is called the short engine block. The two components are welded together, and internally, are connected by the connecting rods, hence the term, "connecting" rods. Motive power is transferred from the piston movements to the crankshaft via the connecting rods.

Short engine blocks removed from salvaged tractor yards are called good used short blocks. Used engine short blocks that were totally overhauled, replaced with new or rebuilt internal components, and restored to OEM specifications are called rebuilt short blocks. OEM companies may have their own abbreviations for their engine, i.e., John Deere will refer to their reconditioned engine blocks as John Deere Reman, and Caterpillar will call theirs Cat Reman. OEM reman products typically carry the new product unlimited use warranty, when installed by the dealer's mechanics.

Ontario Parts Hotline is a premium provider of Kubota Tractor Parts and Kubota PTO Parts.

How Tractor Radiators Work

The most efficient tractor engine will utilize approximately 35% of its energy into useful actions of driving, plowing, pulling, transporting and other farm duties. The excess 65% of energy produced will be lost in the form of sound energy, heat energy, radiant energy, vibrations, and friction.

A sufficiently cooled engine, and its counterpart, a sufficiently hot engine, are both necessary for optimum tractor engine performance. An over cooled engine can cause excessive damage to the engine components. Pistons and liners are designed to maintain very specific and minute clearances.

An over cooled engine will have its liners cooler than the hot pistons. The aluminum pistons typically expand faster than the steel based liners, and therefore, there will be scarring between the two surfaces. This damages the pistons, piston rings, and liner surface.

An excessively hot engine will cause all internal components to expand beyond normal tolerances, producing loose components, and burnt tractor engine parts. This is a phenomenon that is referred to as a "shot" engine or "seized" engine by mechanics. The tractor radiator removes excessive heat from the engine. The coolant that is circulating through the engine is allowed to be cooled via the tractor radiator.

The thermostats aids in this cooling process by preventing heated coolant from leaving the engine during the startup phase when the engine is cold, and allowing coolant to flow through the radiator when the engine temperature is above design temperature limits. The tractor radiator can be manufactured from aluminum or copper or alloys of aluminum or copper. Aluminum or copper is used as both have a high heat capacity, which is the capability to absorb and release a large amount of heat very easily.

The tractor radiator basically has rows of tubes, and onto these tubes are attached thin strips of metal. The coolant is forced through the tubes the water pump. Typically, the coolant flows from the top of the radiator, downwards through the tubes, and back into the engine block. Specially designed radiator hoses perform these high temperature connections between the engine and the radiator.

Onto these rows of metal tubes, are fitted thin strips of identical or similar metal. This effectively increases the surface area of the tubes, allowing the heat form the coolant to travel by conduction to the fins. The fins are typically designed as fins per inch. The 8N Ford tractor radiator and the David Brown radiator model 990 has eight (8) fins per inch, the Allis Chalmers radiator for the D17 has seven (7) fins per inch, the John Deere radiator for model 3020 has ten (10) fins per inch.

The other main component of the cooling system is the radiator cap. This serves to maintain a high pressure in the radiator, thus preventing the coolant from boiling, and it acts like a pressure relieve valve releasing coolant to the reservoir when hot, and pulling coolant into the engine when cold.

Ontario Parts Hotline is a premium provider of Kubota Tractor Parts and Kubota PTO Parts.

Allis Chalmers WD Tractor Specifications

The Allis Chalmers WD tractor was an improvement of previous Allis Chalmers tractors, the A, B, RC, U, UC, WC and WF.

Production of the Allis Chalmers WD tractor began in 1948, and production was continued on a yearly basis until 1953. The WD was manufactured to be a replacement of the WC models, which was discontinued in 1948.

After 1953, the WD was then phased out, and the WD 45, G, and the D series were then manufactured instead.

In 1948 when the WD was being manufactured, the preferred fuel at that time was called “tractor fuel.” Tractor fuel is what can be referred to as kerosene today. However, because kerosene does not burn or combust as gasoline does, it could not have been used to start the engine. Thus, the WED was built with a small gasoline tank. This was used to start the tractor, and then the fuel type was switched over to the kerosene tank when the engine was hot. Today’s tractors that were designed for kerosene are now fully operated on gasoline.

The engines were all manufactured by Allis Chalmers, and were designed for tractor fuel initially, and then the later WD tractors for gasoline.

The Allis Chalmers WD tractor is distinguished by the single or double front wheel configurations. These tractors were not designed with the wide front axle configurations that are typical of today’s tractors. The single wheel used a casted “U” shaped support to house the single wheel, with a wheel shaft between the two ends. The double wheel uses the unique inverted “T” shaped shaft, with the two wheels fixed to both ends. All of the WD tractors were two wheel drive machines (2WD).

Allis Chalmers WD tractors were fitted with a manual transmission, and these transmissions were designed with four forward gears and a single reverse gear. This was used to provide thirty six (36) hp rear 540 rpm PTO take off shaft.

The electrical system was typical of the 6 volts (v) DC circuits that were popular in the earliest designed tractors. These systems continue to operate today, however a significant number of farmers and other owners have converted the 6V electrical system to 12V systems. Allis Chalmers WD parts are easier to obtain for the 12V system that the traditional 6V systems.

The serial number of the tractor varies from 1 in 1948 to 131273 in 1953, when the tractor was discontinued. This serial number is located at the top left of the differential brake housing.

Even though the hand crank systems gave way to the 6V starting systems, the Allis Chalmers WD tractor continues to provide motive power for thousands of farms in North America.

Ontario Parts Hotline is a premium provider of Kubota Tractor Parts and Kubota PTO Parts.

How to Start Diesel Engines in Low Temperatures

Attempting to start Diesel engines in cold or sub zero temperatures is extremely difficult and usually an impossible task, unless appropriate accessories has been added to the engine to assist in such starting.

The hard starting problems of diesel engines in below zero / freezing temperatures are caused by two factors. One is the initial cold air being drawn into the turbocharger and compressed into the engine’s cylinder head. The second is the fuel itself, is also cold and this sub zero / freezing temperature fuel is sprayed into the cold engine’s combustion chamber, where it mixes with the cold air drawn thru turbocharger.

Additional problems will result from fact that a cold starting diesel engine needs to reach at least two hundred (200) rpm to develop a four hundred (400) psi compression pressure to sufficiently compress the air to fuel mixture, and thus, resulting in combustion.

These two problems will result in the diesel fuel being sprayed into the combustion chamber, and it will condense on the cold surfaces of the cylinder liners or cylinder block. This liquid fuel will seep through the piston rings, and fall into the engine’s crankcase, diluting the lubricating oil in the process.

Two simple devices can be used to reduce the possibility that these conditions occur. One is by the use of battery heaters and glow plugs. No one device can be used. Usually a combination of several devices will provide an overall efficient starting process.

The efficiency of a battery drops as its temperature drops. A battery that is fully charged at 26 degrees C (80 degrees F) will have its starting capacity drop to approximately forty six percent (46%) available power at 17.7 degrees C below 0 (0 degrees F). Additionally, at this temperature, the engine will be approximately two and a half (2.5) times harder to start at -17.7 C (0 F) degrees due to thicker oil and resistance to movement of internal moving parts. This gets worst at lower temperatures are experienced.

To solve this, one of two common devices is used to heat the battery. One is a padded silicone covered, acid resistant rubber hot pad heater. This operates off of 110/120V and comes in various wattages. The power range can be 60W to 500W, and this can be used to heat the batteries, engine oil pan, fuel tank, hydraulic tank, and the water tank.

The other device that is typically used in conjunction with the hot pad is the glow plug. This is an internally fixed low voltage heating element that is fitted directly into the combustion chamber. When this is switched on, it can take up to two minutes to heat up, however, by that time it has reached approximately 700 degrees C (1652 degrees F) and the combustion chamber is hot enough to prevent the condensing of the diesel fuel, and thus, ignition is guaranteed.

Ontario Parts Hotline is a premium provider of Kubota Tractor Parts and Kubota PTO Parts.